# API-doc ```{eval-rst} .. automodule:: mitiq :members: .. modules: alphabetical order ``` ## Benchmarks ### Mirror Circuits ```{eval-rst} .. automodule:: mitiq.benchmarks.mirror_circuits :members: ``` ### Randomized Benchmarking Circuits ```{eval-rst} .. automodule:: mitiq.benchmarks.randomized_benchmarking :members: ``` ### GHZ Circuits ```{eval-rst} .. automodule:: mitiq.benchmarks.ghz_circuits :members: ``` ### Quantum Volume Circuits ```{eval-rst} .. automodule:: mitiq.benchmarks.quantum_volume_circuits :members: ``` ### Quantum Phase Estimation Circuits ```{eval-rst} .. automodule:: mitiq.benchmarks.qpe_circuits :members: ``` ### W State Circuits ```{eval-rst} .. automodule:: mitiq.benchmarks.w_state_circuits :members: ``` ### Mirror Quantum Volume Circuits ```{eval-rst} .. automodule:: mitiq.benchmarks.mirror_qv_circuits :members: ``` ## Circuit types and result types ```{eval-rst} .. autoclass:: mitiq.typing.QPROGRAM ``` ```{eval-rst} .. autoclass:: mitiq.typing.QuantumResult ``` ```{eval-rst} .. autoclass:: mitiq.typing.Bitstring ``` ```{eval-rst} .. autoclass:: mitiq.typing.MeasurementResult :members: ``` ## Clifford Data Regression ### Clifford Data Regression (High-Level Tools) ```{eval-rst} .. automodule:: mitiq.cdr.cdr :members: ``` ### Clifford Training Data ```{eval-rst} .. automodule:: mitiq.cdr.clifford_training_data :members: ``` ### Data Regression ```{eval-rst} .. automodule:: mitiq.cdr.data_regression :members: ``` See Ref. :cite:`Czarnik_2021_Quantum` for more details on these methods. ## Mitiq - Braket ### Conversions ```{eval-rst} .. automodule:: mitiq.interface.mitiq_braket.conversions :members: ``` ## Mitiq - Cirq ### Cirq Utils ```{eval-rst} .. automodule:: mitiq.interface.mitiq_cirq.cirq_utils :members: ``` ## Mitiq - PyQuil ### Conversions ```{eval-rst} .. automodule:: mitiq.interface.mitiq_pyquil.conversions :members: ``` ## Mitiq - Qiskit ### Conversions ```{eval-rst} .. automodule:: mitiq.interface.mitiq_qiskit.conversions :members: ``` ### Qiskit Utils ```{eval-rst} .. automodule:: mitiq.interface.mitiq_qiskit.qiskit_utils :members: ``` ## Classical Shadows ### Classical Shadows (High-Level Tools) ```{eval-rst} .. automodule:: mitiq.shadows.shadows :members: ``` ### Quantum Processing ```{eval-rst} .. automodule:: mitiq.shadows.quantum_processing :members: ``` ### Classical Post-Processing ```{eval-rst} .. automodule:: mitiq.shadows.classical_postprocessing :members: ``` ### Utility Functions ```{eval-rst} .. automodule:: mitiq.shadows.shadows_utils :members: ``` ## Digital Dynamical Decoupling ### Digital Dynamical Decoupling (High-Level Tools) ```{eval-rst} .. automodule:: mitiq.ddd.ddd :members: ``` ### Insertion ```{eval-rst} .. automodule:: mitiq.ddd.insertion :members: ``` ### Rules ```{eval-rst} .. automodule:: mitiq.ddd.rules.rules :members: ``` ## Executors ```{eval-rst} .. automodule:: mitiq.executor.executor :members: ``` ## Observables ### Observable ```{eval-rst} .. automodule:: mitiq.observable.observable :members: ``` ### Pauli ```{eval-rst} .. automodule:: mitiq.observable.pauli :members: ``` ## Probabilistic Error Cancellation ### Probabilistic Error Cancellation (High-Level Tools) ```{eval-rst} .. automodule:: mitiq.pec.pec :members: ``` ### Quasi-Probability Representations ```{eval-rst} .. automodule:: mitiq.pec.representations.optimal :members: .. automodule:: mitiq.pec.representations.damping :members: .. automodule:: mitiq.pec.representations.depolarizing :members: ``` ### Learning-based PEC ```{eval-rst} .. automodule:: mitiq.pec.representations.biased_noise :members: .. automodule:: mitiq.pec.representations.learning :members: ``` ### Sampling from a Noisy Decomposition of an Ideal Operation ```{eval-rst} .. automodule:: mitiq.pec.sampling :members: ``` ### Probabilistic Error Cancellation Types ```{eval-rst} .. automodule:: mitiq.pec.types.types :members: ``` ### Utilities for Quantum Channels ```{eval-rst} .. automodule:: mitiq.pec.channels :members: ``` ## Raw ### Run experiments without error mitigation (raw results) ```{eval-rst} .. automodule:: mitiq.raw.raw ``` ## Readout-Error Mitigation ### Postselection ```{eval-rst} .. automodule:: mitiq.rem.post_select :members: ``` ### REM Technique ```{eval-rst} .. automodule:: mitiq.rem.rem :members: ``` ## Zero Noise Extrapolation ### Zero Noise Extrapolation (High-Level Tools) ```{eval-rst} .. automodule:: mitiq.zne.zne :members: ``` ### Inference and Extrapolation: Factories ```{eval-rst} .. automodule:: mitiq.zne.inference :members: ``` ### Noise Scaling: Unitary Folding ```{eval-rst} .. automodule:: mitiq.zne.scaling.folding :members: ``` ### Noise Scaling: Identity Insertion Scaling ```{eval-rst} .. automodule:: mitiq.zne.scaling.identity_insertion :members: ``` ### Noise Scaling: Layerwise Folding ```{eval-rst} .. automodule:: mitiq.zne.scaling.layer_scaling :members: ``` ### Noise Scaling: Parameter Calibration ```{eval-rst} .. automodule:: mitiq.zne.scaling.parameter :members: ``` ## Pauli Twirling ```{eval-rst} .. automodule:: mitiq.pt.pt :members: ``` ## Quantum Subspace Expansion ```{eval-rst} .. automodule:: mitiq.qse.qse :members: ``` ## Calibration ```{eval-rst} .. automodule:: mitiq.calibration.calibrator :members: .. automodule:: mitiq.calibration.settings :members: ```