--- jupytext: text_representation: extension: .md format_name: myst format_version: 0.13 jupytext_version: 1.12.0 kernelspec: display_name: Python 3 language: python name: python3 --- # Mitiq with Braket This notebook shows improved performance on a mirror circuit benchmark with zero-noise extrapolation on Rigetti Aspen-9 via Amazon Braket. ```{note} This notebook is intended to be run through the Amazon Web Services (AWS) console --- that is, by uploading the `.ipynb` file to and running from there. This requires an AWS account. **Without an AWS account, you can still run the notebook on a noisy simulator**. ``` ## Setup ```{code-cell} ipython3 try: import mitiq except ImportError: !pip install git+https://github.com/unitaryfund/mitiq --quiet ``` ```{code-cell} ipython3 from typing import Tuple import matplotlib.pyplot as plt import networkx as nx import numpy as np import pandas as pd from braket.aws import AwsDevice from braket.circuits import Circuit, gates, Noise from mitiq import benchmarks, zne ``` ## Choose a device to run on We first choose a device to run on. ```{warning} Verbatim compiling in Braket --- a necessary feature to perform zero-noise extrapolation --- is currently only available on Rigetti devices. ``` ```{code-cell} ipython3 try: aws_device = AwsDevice("arn:aws:braket:::device/qpu/rigetti/Aspen-9") except: from braket.devices import LocalSimulator aws_device = LocalSimulator("braket_dm") on_aws = aws_device.name != "DensityMatrixSimulator" ``` (examples/braket_mirror_circuit/define-the-circuit)= ## Define the circuit We use mirror circuits to benchmark the performance of the device. Mirror circuits, introduced in {cite}`Proctor_2021_NatPhys`, are designed such that only one bitstring should be sampled. When run on a device, any other measured bitstrings are due to noise. The frequency of the correct bitstring is our target metric. ```{note} Mirror circuits build on Loschmidt echo circuits --- i.e., circuits of the form $U U^\dagger$ for some unitary $U$. Loschmidt echo circuits are good benchmarks but have shortcomings --- e.g., they are unable to detect coherent errors. Mirror circuits add new features to account for these shortcomings. For more background, see . ``` To define a mirror circuit, we need the device graph. We will use a subgraph of the device, and our first step is picking a subgraph with good qubits. ### Pick good qubits The full device graph is shown below. ```{code-cell} ipython3 if on_aws: device_graph = aws_device.topology_graph nx.draw_kamada_kawai(device_graph, with_labels=True) ``` To pick good qubits, we pull the latest calibration report in the next two cells. The first cell shows two-qubit calibration data sorted by best `CZ` fidelity. ```{code-cell} ipython3 if on_aws: twoq_data = pd.DataFrame.from_dict(aws_device.properties.provider.specs["2Q"]).T twoq_data.sort_values(by=["fCZ"], ascending=False).head() if on_aws else print() ``` And the next cell shows single-qubit calibration data sorted by best readout (RO) fidelity. ```{code-cell} ipython3 if on_aws: oneq_data = pd.DataFrame.from_dict(aws_device.properties.provider.specs["1Q"]).T oneq_data.sort_values(by=["fRO"], ascending=False).head() if on_aws else print() ``` Using this calibration data as a guide, we pick good qubits and visualize the device subgraph that we will run on. ```{code-cell} ipython3 connectivity_graph = device_graph.subgraph((20, 21)) if on_aws else nx.complete_graph(2) nx.draw(connectivity_graph, with_labels=True) ``` ### Generate mirror circuit Now that we have the device (sub)graph, we can generate a mirror circuit and the bitstring it should sample as follows. ```{code-cell} ipython3 circuit, correct_bitstring = benchmarks.generate_mirror_circuit( nlayers=1, two_qubit_gate_prob=1.0, two_qubit_gate_name="CZ", connectivity_graph=connectivity_graph, seed=1, return_type="braket", ) print(circuit) print("\nShould sample:", correct_bitstring) ``` ### Compilation When using verbatim compiling on Braket, every gate must be a native hardware gate. Some single-qubit gates in the above circuit are not natively supported by Rigetti. We account for this with the quick-and-dirty compiler below. ```{code-cell} ipython3 def compile_to_rigetti_gateset(circuit: Circuit) -> Circuit: compiled = Circuit() for instr in circuit.instructions: if isinstance(instr.operator, gates.Vi): compiled.add_instruction(gates.Instruction(gates.Rx(-np.pi / 2), instr.target)) elif isinstance(instr.operator, gates.V): compiled.add_instruction(gates.Instruction(gates.Rx(np.pi / 2), instr.target)) elif isinstance(instr.operator, gates.Ry): compiled.add_instruction(gates.Instruction(gates.Rx(-np.pi / 2), instr.target)) compiled.add_instruction(gates.Instruction(gates.Rz(-instr.operator.angle), instr.target)) compiled.add_instruction(gates.Instruction(gates.Rx(np.pi / 2), instr.target)) elif isinstance(instr.operator, gates.Y): compiled.add_instruction(gates.Instruction(gates.Rx(-np.pi / 2), instr.target)) compiled.add_instruction(gates.Instruction(gates.Rz(np.pi), instr.target)) compiled.add_instruction(gates.Instruction(gates.Rx(np.pi / 2), instr.target)) elif isinstance(instr.operator, gates.X): compiled.add_instruction(gates.Instruction(gates.Rx(np.pi), instr.target)) elif isinstance(instr.operator, gates.Z): compiled.add_instruction(gates.Instruction(gates.Rz(np.pi), instr.target)) elif isinstance(instr.operator, gates.S): compiled.add_instruction(gates.Instruction(gates.Rz(np.pi / 2), instr.target)) elif isinstance(instr.operator, gates.Si): compiled.add_instruction(gates.Instruction(gates.Rz(-np.pi / 2), instr.target)) else: compiled.add_instruction(instr) return compiled ``` ## Define the executor Now that we have a circuit, we define the `execute` function which inputs a circuit and returns an expectation value. In this example we return the frequency of sampling the correct bitstring. ```{code-cell} ipython3 def execute( circuit: Circuit, shots: int = 1_000, s3_folder: Tuple[str, str] = ("bucket", "folder/"), ) -> float: if on_aws: # Add verbatim compiling so that ZNE can be used. circuit = Circuit().add_verbatim_box( compile_to_rigetti_gateset(circuit) ) aws_task = aws_device.run( circuit, s3_folder, disable_qubit_rewiring=True, shots=shots ) else: aws_task = aws_device.run( circuit.copy().apply_gate_noise( Noise.Depolarizing(probability=0.002) ), shots=shots, ) return aws_task.result().measurement_probabilities.get( "".join(map(str, correct_bitstring)), 0.0 ) ``` ## Noisy value The result of running the example mirror circuit without zero-noise extrapolation is shown below. ```{code-cell} ipython3 noisy_value = execute(circuit) print("Noisy value:", noisy_value) ``` ## Mitigated value The result of running the example mirror circuit with zero-noise extrapolation is shown below. ```{code-cell} ipython3 zne_value = zne.execute_with_zne( circuit, execute, scale_noise=zne.scaling.fold_global, factory=zne.inference.PolyFactory(scale_factors=[1, 3, 5], order=2) ) print("ZNE value:", zne_value) ``` In this simple example, we see that zero-noise extrapolation improves the result. (Recall that the noiseless value is `1.0`.) ## Survival probability vs. depth Now we run the same experiment above but varying the depth (`nlayers`) of the mirror circuit. We also average over several mirror circuits at each depth. ```{code-cell} ipython3 # Experiment parameters. nlayers_values = list(range(1, 20, 2)) ntrials = 4 # To store results. noisy_values = [] zne_values = [] # Run the experiment and store results. for nlayers in nlayers_values: for i in range(ntrials): circuit, correct_bitstring = benchmarks.generate_mirror_circuit( nlayers=nlayers, two_qubit_gate_prob=1.0, two_qubit_gate_name="CZ", connectivity_graph=connectivity_graph, seed=i, return_type="braket", ) noisy_values.append(execute(circuit)) zne_values.append( zne.execute_with_zne( circuit, execute, scale_noise=zne.scaling.fold_global, factory=zne.inference.PolyFactory(scale_factors=[1, 3, 5], order=2)), ) ``` Now we can visualize the results. ```{code-cell} ipython3 average_zne_values = np.average(np.array(zne_values).reshape((len(nlayers_values), ntrials)), axis=1) average_noisy_values = np.average(np.array(noisy_values).reshape((len(nlayers_values), ntrials)), axis=1) plt.rcParams.update({"font.family": "serif", "font.size": 16}) plt.figure(figsize=(9, 5)) plt.plot(nlayers_values, average_zne_values, "--o", label="ZNE") plt.plot(nlayers_values, average_noisy_values, "-.o", label="Raw") plt.xlabel("Circuit depth") plt.ylabel("Survival probability") plt.legend() plt.show(); ``` We see that zero-noise extrapolation on average improves the survival probability at each depth.