--- jupytext: text_representation: extension: .md format_name: myst format_version: 0.13 jupytext_version: 1.11.4 kernelspec: display_name: Python 3 language: python name: python3 --- # Defining Hamiltonians as Linear Combinations of Pauli Strings This tutorial shows an example of using Hamiltonians defined as {class}`~cirq.PauliSum` objects or similar objects in other supported frontends. The usage of these Hamiltonian-like objects does not change the interface with Mitiq, but we show an example for users who prefer these constructions. Specifically, in this tutorial we will mitigate the expectation value of the following Hamiltonian on two qubits. $$ H := 1.5 X_1 Z_2 - 0.7 Y_1 $$ ## Setup First we import libraries for this example. ```{code-cell} ipython3 from functools import partial import matplotlib.pyplot as plt import numpy as np import cirq from mitiq.zne import execute_with_zne from mitiq.zne.inference import LinearFactory ``` ## Defining the Hamiltonian Now we define the Hamiltonian as a {class}`~cirq.PauliSum` by defining the Pauli strings $X_1 Z_2$ and $Y_1$ then taking a linear combination of these to create the Hamiltonian above. ```{code-cell} ipython3 # Qubit register qreg = cirq.LineQubit.range(2) # Two Pauli operators string1 = cirq.PauliString(cirq.ops.X.on(qreg[0]), cirq.ops.Z.on(qreg[1])) string2 = cirq.PauliString(cirq.ops.Y.on(qreg[1])) # Hamiltonian ham = 1.5 * string1 - 0.7 * string2 ``` By printing the Hamiltonian we see: ```{code-cell} ipython3 print(ham) ``` Note that we could have created the Hamiltonian by directly defining a {class}`~cirq.PauliSum` with the coefficients. ## Using the Hamiltonian in the executor To interface with Mitiq, we define an `executor` function which maps an input (noisy) circuit to an expectation value. In the code block below, we show how to define this function and return the expectation of the Hamiltonian above. ```{code-cell} ipython3 def executor( circuit: cirq.Circuit, hamiltonian: cirq.PauliSum, noise_value: float ) -> float: """Runs the circuit and returns the expectation value of the Hamiltonian. Args: circuit: Defines the ansatz wavefunction. hamiltonian: Hamiltonian to compute the expectation value of w.r.t. the ansatz wavefunction. noise_value: Probability of depolarizing noise. """ # Add noise noisy_circuit = circuit.with_noise(cirq.depolarize(noise_value)) # Get the final density matrix dmat = ( cirq.DensityMatrixSimulator() .simulate(noisy_circuit) .final_density_matrix ) # Return the expectation value return hamiltonian.expectation_from_density_matrix( dmat, qubit_map={ham.qubits[i]: i for i in range(len(ham.qubits))} ).real ``` This executor inputs a Hamiltonian as well as a noise value, adds noise, then uses the {meth}`cirq.PauliSum.expectation_from_density_matrix` method to return the expectation value. The remaining interface is as usual with Mitiq. For the sake of example, we show an application mitigating the expectation value of $H$ with an example ansatz at different noise levels. ## Example usage Below we create an example ansatz parameterized by one angle $\gamma$. ```{code-cell} ipython3 def ansatz(gamma: float) -> cirq.Circuit: """Returns the ansatz circuit.""" return cirq.Circuit( cirq.ops.ry(gamma).on(qreg[0]), cirq.ops.CNOT.on(*qreg), cirq.ops.rx(gamma / 2).on_each(qreg), cirq.ops.CNOT.on(*qreg), ) ``` For the angle $\gamma = \pi$, this ansatz has the following structure: ```{code-cell} ipython3 print(ansatz(gamma=np.pi)) ``` We now compute expectation values of $H$ using the `executor` as follows. ```{code-cell} ipython3 pvals = np.linspace(0, 0.01, 20) expvals = [executor(ansatz(gamma=np.pi), ham, p) for p in pvals] ``` We can compute mitigated expectation values at these same noise levels by running the following. Here, we use a {class}`.LinearFactory` and use the `partial` function to update the `executor` for each noise value. The latter point ensures `this_executor` has the correct signature (input circuit, output float) to use with {func}`.execute_with_zne`. ```{code-cell} ipython3 fac = LinearFactory(scale_factors=list(range(1, 6))) mitigated_expvals = [] for p in pvals: this_executor = partial(executor, hamiltonian=ham, noise_value=p) mitigated_expvals.append( execute_with_zne(ansatz(gamma=np.pi), this_executor, factory=fac) ) ``` We can now visualize the effect that error mitigation has by running the following code for plotting. This produces a plot of expectation value (unmitigated and mitigated) $\langle H \rangle$ vs. noise strength $p$. We include the true (noiseless) expectation value on the plot for comparison. ```{code-cell} ipython3 plt.rcParams.update({"font.family": "serif", "font.size": 16}) plt.figure(figsize=(9, 5)) plt.axhline(y=expvals[0], label="True", color="black") plt.plot(pvals, expvals, "--o", label="Unmitigated") plt.plot(pvals, mitigated_expvals, "-.o", label="Mitigated") plt.xlabel("Noise strength $p$") plt.ylabel(r"Expecation value $\langle H \rangle$") plt.legend() plt.show() ``` As we can see, the mitigated expectation values are closer, on average, to the true expectation value. ## Sampling Finally, we note that $\langle H \rangle$ can be estimated by sampling using the {class}`cirq.PauliSumCollector`. An example of a `sampling_executor` which uses this is shown below. ```{code-cell} ipython3 def sampling_executor( circuit: cirq.Circuit, hamiltonian: cirq.PauliSum, noise_value: float, nsamples: int = 10_000 ) -> float: """Runs the circuit and returns the expectation value of the Hamiltonian. Args: circuit: Defines the ansatz wavefunction. hamiltonian: Hamiltonian to compute the expectation value of w.r.t. the ansatz wavefunction. noise_value: Probability of depolarizing noise. nsamples: Number of samples to take per each term of the Hamiltonian. """ # Add noise noisy_circuit = circuit.with_noise(cirq.depolarize(noise_value)) # Do the sampling psum = cirq.PauliSumCollector(circuit, ham, samples_per_term=nsamples) psum.collect(sampler=cirq.Simulator()) # Return the expectation value return psum.estimated_energy() ``` This executor can be used in the same way as the previously defined `executor` which used a density matrix simulation to evaluate $\langle H \rangle$.