References#

[1]

Andrea Mari, Nathan Shammah, and William J. Zeng. Extending quantum probabilistic error cancellation by noise scaling. Phys. Rev. A, 104:052607, (2021). URL: https://link.aps.org/doi/10.1103/PhysRevA.104.052607, doi:10.1103/PhysRevA.104.052607.

[2]

Angus Lowe, Max Hunter Gordon, Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio. Unified approach to data-driven quantum error mitigation. Phys. Rev. Research, 3:033098, (2021). URL: https://link.aps.org/doi/10.1103/PhysRevResearch.3.033098, doi:10.1103/PhysRevResearch.3.033098.

[3]

Fernando A Calderon-Vargas, Timothy Proctor, Kenneth Rudinger, and Mohan Sarovar. Quantum circuit debugging and sensitivity analysis via local inversions. Quantum, 7:921, (2023). URL: https://doi.org/10.22331/q-2023-02-09-921.

[4]

Ying Li and Simon C. Benjamin. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X, 7:021050, (2017). URL: https://link.aps.org/doi/10.1103/PhysRevX.7.021050, doi:10.1103/PhysRevX.7.021050.

[5]

Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error mitigation for short-depth quantum circuits. Physical Review Letters, (2017). URL: https://doi.org/10.1103/PhysRevLett.119.180509, doi:10.1103/physrevlett.119.180509.

[6]

Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta. Error mitigation extends the computational reach of a noisy quantum processor. Nature, 567(7749):491–495, (2019). URL: https://doi.org/10.1038/s41586-019-1040-7, doi:10.1038/s41586-019-1040-7.

[7]

Tudor Giurgica-Tiron, Yousef Hindy, Ryan LaRose, Andrea Mari, and William J. Zeng. Digital zero noise extrapolation for quantum error mitigation. (2020). arXiv:2005.10921.

[8]

Maximilian Schlosshauer. Quantum decoherence. Physics Reports, 831:1–57, (2019). URL: https://doi.org/10.1016%2Fj.physrep.2019.10.001, doi:10.1016/j.physrep.2019.10.001.

[9]

Wojciech H. Zurek. Decoherence and the transition from quantum to classical – revisited. (2003). arXiv:quant-ph/0306072.

[10]

Jinzhao Sun, Xiao Yuan, Takahiro Tsunoda, Vlatko Vedral, Simon C. Benjamin, and Suguru Endo. Mitigating realistic noise in practical noisy intermediate-scale quantum devices. Phys. Rev. Applied, 15:034026, (2021). URL: https://link.aps.org/doi/10.1103/PhysRevApplied.15.034026, doi:10.1103/PhysRevApplied.15.034026.

[11]

Ryuji Takagi. Optimal resource cost for error mitigation. Physical Review Research, (2021). URL: http://dx.doi.org/10.1103/PhysRevResearch.3.033178, doi:10.1103/physrevresearch.3.033178.

[12]

Armands Strikis, Dayue Qin, Yanzhu Chen, Simon C. Benjamin, and Ying Li. Learning-based quantum error mitigation. PRX Quantum, (2021). URL: http://dx.doi.org/10.1103/PRXQuantum.2.040330, doi:10.1103/prxquantum.2.040330.

[13]

Shuaining Zhang, Yao Lu, Kuan Zhang, Wentao Chen, Ying Li, Jing-Ning Zhang, and Kihwan Kim. Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system. Nature Communications, (2020). URL: http://dx.doi.org/10.1038/s41467-020-14376-z, doi:10.1038/s41467-020-14376-z.

[14]

Hakop Pashayan, Joel J. Wallman, and Stephen D. Bartlett. Estimating outcome probabilities of quantum circuits using quasiprobabilities. Phys. Rev. Lett., 115:070501, (2015). URL: https://link.aps.org/doi/10.1103/PhysRevLett.115.070501, doi:10.1103/PhysRevLett.115.070501.

[15]

Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio. Error mitigation with Clifford quantum-circuit data. Quantum, 5:592, (2021). URL: http://dx.doi.org/10.22331/q-2021-11-26-592, doi:10.22331/q-2021-11-26-592.

[16]

Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many properties of a quantum system from very few measurements. Nature Physics, 16(10):1050–1057, (2020).

[17]

Senrui Chen, Wenjun Yu, Pei Zeng, and Steven T Flammia. Robust shadow estimation. PRX Quantum, 2(3):030348, (2021).

[18]

Scott Aaronson. Shadow tomography of quantum states. In Proceedings of the 50th annual ACM SIGACT symposium on theory of computing, 325–338. (2018).

[19]

Aram W Harrow. The church of the symmetric subspace. arXiv preprint arXiv:1308.6595, (2013).

[20]

Hong-Ye Hu, Soonwon Choi, and Yi-Zhuang You. Classical shadow tomography with locally scrambled quantum dynamics. Physical Review Research, 5(2):023027, (2023).

[21]

Lorenza Viola, Emanuel Knill, and Seth Lloyd. Dynamical decoupling of open quantum systems. Physical Review Letters, 82(12):2417–2421, (1999). URL: https://doi.org/10.1103/PhysRevLett.82.2417, doi:10.1103/physrevlett.82.2417.

[22]

Lorenza Viola and Seth Lloyd. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A, 58:2733–2744, (1998). URL: https://link.aps.org/doi/10.1103/PhysRevA.58.2733, doi:10.1103/PhysRevA.58.2733.

[23]

Jingfu Zhang, Alexandre M. Souza, Frederico Dias Brandao, and Dieter Suter. Protected quantum computing: interleaving gate operations with dynamical decoupling sequences. Phys. Rev. Lett., 112:050502, (2014). URL: https://link.aps.org/doi/10.1103/PhysRevLett.112.050502, doi:10.1103/PhysRevLett.112.050502.

[24]

H.P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. OUP Oxford, (2007). ISBN 9780199213900.

[25]

Joel J. Wallman and Joseph Emerson. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A, 94:052325, (2016). URL: https://link.aps.org/doi/10.1103/PhysRevA.94.052325, doi:10.1103/PhysRevA.94.052325.

[26]

Bibek Pokharel, Namit Anand, Benjamin Fortman, and Daniel A. Lidar. Demonstration of fidelity improvement using dynamical decoupling with superconducting qubits. Phys. Rev. Lett., 121:220502, (2018). URL: https://link.aps.org/doi/10.1103/PhysRevLett.121.220502, doi:10.1103/PhysRevLett.121.220502.

[27]

Petar Jurcevic, Ali Javadi-Abhari, Lev S. Bishop, Isaac Lauer, Daniela F. Bogorin, Markus Brink, Lauren Capelluto, Oktay Günlük, Toshinari Itoko, Naoki Kanazawa, Abhinav Kandala, George A. Keefe, Kevin Krsulich, William Landers, Eric P. Lewandowski, Douglas T. McClure, Giacomo Nannicini, Adinath Narasgond, Hasan M. Nayfeh, Emily Pritchett, Mary Beth Rothwell, Srikanth Srinivasan, Neereja Sundaresan, Cindy Wang, Ken X. Wei, Christopher J. Wood, Jeng-Bang Yau, Eric J. Zhang, Oliver E. Dial, Jerry M. Chow, and Jay M. Gambetta. Demonstration of quantum volume 64 on a superconducting quantum computing system. (2021). arXiv:2008.08571.

[28]

Zijun Chen, Kevin J. Satzinger, Juan Atalaya, Alexander N. Korotkov, Andrew Dunsworth, Daniel Sank, Chris Quintana, Matt McEwen, Rami Barends, Paul V. Klimov, Sabrina Hong, Cody Jones, Andre Petukhov, Dvir Kafri, Sean Demura, Brian Burkett, Craig Gidney, Austin G. Fowler, Alexandru Paler, Harald Putterman, Igor Aleiner, Frank Arute, Kunal Arya, Ryan Babbush, Joseph C. Bardin, Andreas Bengtsson, Alexandre Bourassa, Michael Broughton, Bob B. Buckley, David A. Buell, Nicholas Bushnell, Benjamin Chiaro, Roberto Collins, William Courtney, Alan R. Derk, Daniel Eppens, Catherine Erickson, Edward Farhi, Brooks Foxen, Marissa Giustina, Ami Greene, Jonathan A. Gross, Matthew P. Harrigan, Sean D. Harrington, Jeremy Hilton, Alan Ho, Trent Huang, William J. Huggins, L. B. Ioffe, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Kostyantyn Kechedzhi, Seon Kim, Alexei Kitaev, Fedor Kostritsa, David Landhuis, Pavel Laptev, Erik Lucero, Orion Martin, Jarrod R. McClean, Trevor McCourt, Xiao Mi, Kevin C. Miao, Masoud Mohseni, Shirin Montazeri, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Michael Newman, Murphy Yuezhen Niu, Thomas E. O'Brien, Alex Opremcak, Eric Ostby, Bálint Pató, Nicholas Redd, Pedram Roushan, Nicholas C. Rubin, Vladimir Shvarts, Doug Strain, Marco Szalay, Matthew D. Trevithick, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Juhwan Yoo, Adam Zalcman, Hartmut Neven, Sergio Boixo, Vadim Smelyanskiy, Yu Chen, Anthony Megrant, and Julian Kelly. Exponential suppression of bit or phase errors with cyclic error correction. Nature, 595(7867):383–387, (2021). URL: https://doi.org/10.1038/s41586-021-03588-y, doi:10.1038/s41586-021-03588-y.

[29]

Kaitlin N. Smith, Gokul Subramanian Ravi, Prakash Murali, Jonathan M. Baker, Nathan Earnest, Ali Javadi-Abhari, and Frederic T. Chong. Error Mitigation in Quantum Computers through Instruction Scheduling. (2021). arXiv:2105.01760.

[30]

Poulami Das, Swamit Tannu, Siddharth Dangwal, and Moinuddin Qureshi. Adapt: mitigating idling errors in qubits via adaptive dynamical decoupling. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO '21, 950–962. New York, NY, USA, (2021). Association for Computing Machinery. URL: https://doi.org/10.1145/3466752.3480059, doi:10.1145/3466752.3480059.

[31]

Filip B. Maciejewski, Zoltán Zimborás, and Michał Oszmaniec. Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography. Quantum, 4:257, (2020). URL: https://doi.org/10.22331%2Fq-2020-04-24-257, doi:10.22331/q-2020-04-24-257.

[32]

Sergey Bravyi, Sarah Sheldon, Abhinav Kandala, David C. Mckay, and Jay M. Gambetta. Mitigating measurement errors in multiqubit experiments. Physical Review A, (2021). URL: https://doi.org/10.1103%2Fphysreva.103.042605, doi:10.1103/physreva.103.042605.

[33]

Shelly Garion, Naoki Kanazawa, Haggai Landa, David C. McKay, Sarah Sheldon, Andrew W. Cross, and Christopher J. Wood. Experimental implementation of non-clifford interleaved randomized benchmarking with a controlled-s gate. Physical Review Research, (2021). URL: https://doi.org/10.1103%2Fphysrevresearch.3.013204, doi:10.1103/physrevresearch.3.013204.

[34]

Michael R Geller and Mingyu Sun. Toward efficient correction of multiqubit measurement errors: pair correlation method. Quantum Science and Technology, 6(2):025009, (2021). URL: https://doi.org/10.1088%2F2058-9565%2Fabd5c9, doi:10.1088/2058-9565/abd5c9.

[35]

Jarrod R. McClean, Zhang Jiang, Nicholas C. Rubin, Ryan Babbush, and Hartmut Neven. Decoding quantum errors with subspace expansions. Nature Communications, (2020). URL: https://doi.org/10.1038/s41467-020-14341-w, doi:10.1038/s41467-020-14341-w.

[36]

Akel Hashim, Ravi K. Naik, Alexis Morvan, Jean-Loup Ville, Bradley Mitchell, John Mark Kreikebaum, Marc Davis, Ethan Smith, Costin Iancu, Kevin P. O'Brien, Ian Hincks, Joel J. Wallman, Joseph Emerson, and Irfan Siddiqi. Randomized compiling for scalable quantum computing on a noisy superconducting quantum processor. Phys. Rev. X, 11:041039, (2021). URL: https://link.aps.org/doi/10.1103/PhysRevX.11.041039, doi:10.1103/PhysRevX.11.041039.

[37]

Miroslav Urbanek, Benjamin Nachman, Vincent R. Pascuzzi, Andre He, Christian W. Bauer, and Wibe A. de Jong. Mitigating depolarizing noise on quantum computers with noise-estimation circuits. Phys. Rev. Lett., 127:270502, (2021). URL: https://link.aps.org/doi/10.1103/PhysRevLett.127.270502, doi:10.1103/PhysRevLett.127.270502.

[38]

Abdullah Ash Saki, Amara Katabarwa, Salonik Resch, and George Umbrarescu. Hypothesis testing for error mitigation: how to evaluate error mitigation. (2023). arXiv:2301.02690.

[39]

Suguru Endo, Zhenyu Cai, Simon C. Benjamin, and Xiao Yuan. Hybrid quantum-classical algorithms and quantum error mitigation. Journal of the Physical Society of Japan, 90(3):032001, (2021). URL: https://doi.org/10.7566/JPSJ.90.032001, doi:10.7566/jpsj.90.032001.

[40]

John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, (2018). URL: https://doi.org/10.22331/q-2018-08-06-79, doi:10.22331/q-2018-08-06-79.

[41]

E. Knill. Quantum computing with realistically noisy devices. Nature, 434(7029):39–44, (2005). URL: https://doi.org/10.1038/nature03350, doi:10.1038/nature03350.

[42]

Constantin Brif, Raj Chakrabarti, and Herschel Rabitz. Control of quantum phenomena: past, present and future. New Journal of Physics, 12(7):075008, (2010). URL: https://doi.org/10.1088/1367-2630/12/7/075008, doi:10.1088/1367-2630/12/7/075008.

[43]

Howard J. Carmichael. Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations. Springer-Verlag, (1999). ISBN 978-3-540-54882-9.

[44]

H.J. Carmichael. Statistical Methods in Quantum Optics 2: Non-Classical Fields. Springer Berlin Heidelberg, (2007). ISBN 9783540713197.

[45]

C. Gardiner and P. Zoller. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer, (2004). ISBN 9783540223016.

[46]

Iulia Buluta, Sahel Ashhab, and Franco Nori. Natural and artificial atoms for quantum computation. Reports on Progress in Physics, 74(10):104401, (2011). URL: https://doi.org/10.1088/0034-4885/74/10/104401, doi:10.1088/0034-4885/74/10/104401.

[47]

Suguru Endo, Simon C. Benjamin, and Ying Li. Practical quantum error mitigation for near-future applications. Phys. Rev. X, 8:031027, (2018). URL: https://link.aps.org/doi/10.1103/PhysRevX.8.031027, doi:10.1103/PhysRevX.8.031027.

[48]

Shuaining Zhang, Yao Lu, Kuan Zhang, Wentao Chen, Ying Li, Jing-Ning Zhang, and Kihwan Kim. Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system. Nature Communications, (2020). URL: https://doi.org/10.1038/s41467-020-14376-z, doi:10.1038/s41467-020-14376-z.

[49]

Jarrod R. McClean, Mollie E. Kimchi-Schwartz, Jonathan Carter, and Wibe A. de Jong. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states. Phys. Rev. A, 95:042308, (2017). URL: https://link.aps.org/doi/10.1103/PhysRevA.95.042308, doi:10.1103/PhysRevA.95.042308.

[50]

X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E. O'Brien. Low-cost error mitigation by symmetry verification. Phys. Rev. A, 98:062339, (2018). URL: https://link.aps.org/doi/10.1103/PhysRevA.98.062339, doi:10.1103/PhysRevA.98.062339.

[51]

Sam McArdle, Xiao Yuan, and Simon Benjamin. Error-mitigated digital quantum simulation. Phys. Rev. Lett., 122:180501, (2019). URL: https://link.aps.org/doi/10.1103/PhysRevLett.122.180501, doi:10.1103/PhysRevLett.122.180501.

[52]

R. Sagastizabal, X. Bonet-Monroig, M. Singh, M. A. Rol, C. C. Bultink, X. Fu, C. H. Price, V. P. Ostroukh, N. Muthusubramanian, A. Bruno, M. Beekman, N. Haider, T. E. O'Brien, and L. DiCarlo. Experimental error mitigation via symmetry verification in a variational quantum eigensolver. Phys. Rev. A, 100:010302, (2019). URL: https://link.aps.org/doi/10.1103/PhysRevA.100.010302, doi:10.1103/PhysRevA.100.010302.

[53]

Carlo Cafaro and Peter van Loock. Approximate quantum error correction for generalized amplitude-damping errors. Phys. Rev. A, 89:022316, (2014). URL: https://link.aps.org/doi/10.1103/PhysRevA.89.022316, doi:10.1103/PhysRevA.89.022316.

[54]

Robert M. Parrish, Edward G. Hohenstein, Peter L. McMahon, and Todd J. Mart\'ınez. Quantum computation of electronic transitions using a variational quantum eigensolver. Phys. Rev. Lett., 122:230401, (2019). URL: https://link.aps.org/doi/10.1103/PhysRevLett.122.230401, doi:10.1103/PhysRevLett.122.230401.

[55]

Mario Motta, Chong Sun, Adrian T. K. Tan, Matthew J. O'Rourke, Erika Ye, Austin J. Minnich, Fernando G. S. L. Brandão, and Garnet Kin-Lic Chan. Publisher correction: determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nature Physics, 16(2):231–231, (2020). URL: https://doi.org/10.1038/s41567-019-0756-5, doi:10.1038/s41567-019-0756-5.

[56]

Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik Nielsen, and Robin Blume-Kohout. Measuring the capabilities of quantum computers. Nature Physics, 18(1):75–79, (2021). URL: https://doi.org/10.1038%2Fs41567-021-01409-7, doi:10.1038/s41567-021-01409-7.

[57]

I-Chi Chen, Benjamin Burdick, Yongxin Yao, Peter P. Orth, and Thomas Iadecola. Error-mitigated simulation of quantum many-body scars on quantum computers with pulse-level control. Phys. Rev. Res., 4:043027, (2022). URL: https://link.aps.org/doi/10.1103/PhysRevResearch.4.043027, doi:10.1103/PhysRevResearch.4.043027.

[58]

Maksym Serbyn, Dmitry A. Abanin, and Zlatko Papić. Quantum many-body scars and weak breaking of ergodicity. Nature Physics, 17(6):675–685, (2021). URL: https://doi.org/10.1038/s41567-021-01230-2, doi:10.1038/s41567-021-01230-2.

[59]

Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551(7682):579–584, (2017). URL: https://doi.org/10.1038/nature24622, doi:10.1038/nature24622.

[60]

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning with Applications in RAn Introduction to Statistical Learning with Applications in R. Springer, (2021). URL: https://www.statlearning.com/.

[61]

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm. (2014). arXiv:1411.4028.

[62]

P. J. J. O'Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik, and J. M. Martinis. Scalable quantum simulation of molecular energies. Phys. Rev. X, 6:031007, (2016). URL: https://link.aps.org/doi/10.1103/PhysRevX.6.031007, doi:10.1103/PhysRevX.6.031007.

[63]

Alejandro Sopena, Max Hunter Gordon, Germá n Sierra, and Esperanza López. Simulating quench dynamics on a digital quantum computer with data-driven error mitigation. Quantum Science and Technology, 6(4):045003, (2021). URL: https://doi.org/10.1088%2F2058-9565%2Fac0e7a, doi:10.1088/2058-9565/ac0e7a.

[64]

Tirthak Patel, Ed Younis, Costin Iancu, Wibe de Jong, and Devesh Tiwari. Quest: systematically approximating quantum circuits for higher output fidelity. In Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS '22, 514–528. New York, NY, USA, (2022). Association for Computing Machinery. doi:10.1145/3503222.3507739.

[65]

Christophe Piveteau, David Sutter, Sergey Bravyi, Jay M. Gambetta, and Kristan Temme. Error mitigation for universal gates on encoded qubits. Phys. Rev. Lett., 127:200505, (2021). URL: https://link.aps.org/doi/10.1103/PhysRevLett.127.200505, doi:10.1103/PhysRevLett.127.200505.

[66]

Yasunari Suzuki, Suguru Endo, Keisuke Fujii, and Yuuki Tokunaga. Quantum error mitigation as a universal error reduction technique: applications from the nisq to the fault-tolerant quantum computing eras. PRX Quantum, 3:010345, (2022). URL: https://link.aps.org/doi/10.1103/PRXQuantum.3.010345, doi:10.1103/PRXQuantum.3.010345.

[67]

Misty A. Wahl, Andrea Mari, Nathan Shammah, William J. Zeng, and Gokul Subramanian Ravi. Zero noise extrapolation on logical qubits by scaling the error correction code distance. (2023). arXiv:2304.14985.

[68]

Joshua Combes, Christopher Granade, Christopher Ferrie, and Steven T. Flammia. Logical randomized benchmarking. (2017). arXiv:1702.03688.

[69]

Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A, 86:032324, (2012). URL: https://link.aps.org/doi/10.1103/PhysRevA.86.032324, doi:10.1103/PhysRevA.86.032324.

[70]

Vincent Russo, Andrea Mari, Nathan Shammah, Ryan LaRose, and William J. Zeng. Testing platform-independent quantum error mitigation on noisy quantum computers. (2022). URL: https://arxiv.org/abs/2210.07194, doi:10.48550/ARXIV.2210.07194.

[71]

Gary J Mooney, Gregory A L White, Charles D Hill, and Lloyd C L Hollenberg. Generation and verification of 27-qubit greenberger-horne-zeilinger states in a superconducting quantum computer. Journal of Physics Communications, 5(9):095004, (2021). URL: https://dx.doi.org/10.1088/2399-6528/ac1df7, doi:10.1088/2399-6528/ac1df7.

[72]

Ryan LaRose, Andrea Mari, Sarah Kaiser, Peter J. Karalekas, Andre A. Alves, Piotr Czarnik, Mohamed El Mandouh, Max H. Gordon, Yousef Hindy, Aaron Robertson, Purva Thakre, Misty Wahl, Danny Samuel, Rahul Mistri, Maxime Tremblay, Nick Gardner, Nathaniel T. Stemen, Nathan Shammah, and William J. Zeng. Mitiq: a software package for error mitigation on noisy quantum computers. Quantum, 6:774, (2022). URL: https://doi.org/10.22331/q-2022-08-11-774, doi:10.22331/q-2022-08-11-774.

[73]

Mirko Amico, Helena Zhang, Petar Jurcevic, Lev S. Bishop, Paul Nation, Andrew Wack, and David C. McKay. Defining Standard Strategies for Quantum Benchmarks. (2023). arXiv:2303.02108.

[74]

Thomas G. Wong. Introduction to Classical and Quantum Computing. Rooted Grove, (2022). ISBN 9798985593105.

[75]

Diogo Cruz, Romain Fournier, Fabien Gremion, Alix Jeannerot, Kenichi Komagata, Tara Tosic, Jarla Thiesbrummel, Chun Lam Chan, Nicolas Macris, Marc-André Dupertuis, and Clément Javerzac-Galy. Efficient quantum algorithms for ghz and w states, and implementation on the ibm quantum computer. Advanced Quantum Technologies, 2(5-6):1900015, (2019). URL: https://arxiv.org/abs/1807.05572, doi:https://doi.org/10.48550/arXiv.1807.05572.