References

1

Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error mitigation for short-depth quantum circuits. Physical Review Letters, (2017). URL: http://dx.doi.org/10.1103/PhysRevLett.119.180509, doi:10.1103/physrevlett.119.180509.

2

Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta. Error mitigation extends the computational reach of a noisy quantum processor. Nature, 567(7749):491–495, (2019). URL: https://doi.org/10.1038/s41586-019-1040-7, doi:10.1038/s41586-019-1040-7.

3

Tudor Giurgica-Tiron, Yousef Hindy, Ryan LaRose, Andrea Mari, and William J. Zeng. Digital zero noise extrapolation for quantum error mitigation. (2020). arXiv:2005.10921.

4

John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79, (2018). URL: http://dx.doi.org/10.22331/q-2018-08-06-79, doi:10.22331/q-2018-08-06-79.

5

Howard J. Carmichael. Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations. Springer-Verlag, (1999). ISBN 978-3-540-54882-9.

6

H.J. Carmichael. Statistical Methods in Quantum Optics 2: Non-Classical Fields. Springer Berlin Heidelberg, (2007). ISBN 9783540713197.

7

C. Gardiner and P. Zoller. Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics. Springer, (2004). ISBN 9783540223016.

8

H.P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. OUP Oxford, (2007). ISBN 9780199213900.

9

E. Knill. Quantum computing with realistically noisy devices. Nature, 434(7029):39–44, (2005). URL: http://dx.doi.org/10.1038/nature03350, doi:10.1038/nature03350.

10

Constantin Brif, Raj Chakrabarti, and Herschel Rabitz. Control of quantum phenomena: past, present and future. New Journal of Physics, 12(7):075008, (2010). URL: http://dx.doi.org/10.1088/1367-2630/12/7/075008, doi:10.1088/1367-2630/12/7/075008.

11

Lorenza Viola, Emanuel Knill, and Seth Lloyd. Dynamical decoupling of open quantum systems. Physical Review Letters, 82(12):2417–2421, (1999). URL: http://dx.doi.org/10.1103/PhysRevLett.82.2417, doi:10.1103/physrevlett.82.2417.

12

Iulia Buluta, Sahel Ashhab, and Franco Nori. Natural and artificial atoms for quantum computation. Reports on Progress in Physics, 74(10):104401, (2011). URL: http://dx.doi.org/10.1088/0034-4885/74/10/104401, doi:10.1088/0034-4885/74/10/104401.

13

Ying Li and Simon C. Benjamin. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X, 7:021050, (2017). URL: https://link.aps.org/doi/10.1103/PhysRevX.7.021050, doi:10.1103/PhysRevX.7.021050.

14

Joel J. Wallman and Joseph Emerson. Noise tailoring for scalable quantum computation via randomized compiling. Phys. Rev. A, 94:052325, (2016). URL: https://link.aps.org/doi/10.1103/PhysRevA.94.052325, doi:10.1103/PhysRevA.94.052325.

15

Suguru Endo, Simon C. Benjamin, and Ying Li. Practical quantum error mitigation for near-future applications. Phys. Rev. X, 8:031027, (2018). URL: https://link.aps.org/doi/10.1103/PhysRevX.8.031027, doi:10.1103/PhysRevX.8.031027.

16

Shuaining Zhang, Yao Lu, Kuan Zhang, Wentao Chen, Ying Li, Jing-Ning Zhang, and Kihwan Kim. Error-mitigated quantum gates exceeding physical fidelities in a trapped-ion system. Nature Communications, (2020). URL: http://dx.doi.org/10.1038/s41467-020-14376-z, doi:10.1038/s41467-020-14376-z.

17

Jinzhao Sun, Xiao Yuan, Takahiro Tsunoda, Vlatko Vedral, Simon C. Bejamin, and Suguru Endo. Practical quantum error mitigation for analog quantum simulation. (2020). arXiv:2001.04891.

18

Jarrod R. McClean, Mollie E. Kimchi-Schwartz, Jonathan Carter, and Wibe A. de Jong. Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states. Phys. Rev. A, 95:042308, (2017). URL: https://link.aps.org/doi/10.1103/PhysRevA.95.042308, doi:10.1103/PhysRevA.95.042308.

19

X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E. O’Brien. Low-cost error mitigation by symmetry verification. Phys. Rev. A, 98:062339, (2018). URL: https://link.aps.org/doi/10.1103/PhysRevA.98.062339, doi:10.1103/PhysRevA.98.062339.

20

Sam McArdle, Xiao Yuan, and Simon Benjamin. Error-mitigated digital quantum simulation. Phys. Rev. Lett., 122:180501, (2019). URL: https://link.aps.org/doi/10.1103/PhysRevLett.122.180501, doi:10.1103/PhysRevLett.122.180501.

21

Jarrod R. McClean, Zhang Jiang, Nicholas C. Rubin, Ryan Babbush, and Hartmut Neven. Decoding quantum errors with subspace expansions. Nature Communications, (2020). URL: http://dx.doi.org/10.1038/s41467-020-14341-w, doi:10.1038/s41467-020-14341-w.

22

R. Sagastizabal, X. Bonet-Monroig, M. Singh, M. A. Rol, C. C. Bultink, X. Fu, C. H. Price, V. P. Ostroukh, N. Muthusubramanian, A. Bruno, M. Beekman, N. Haider, T. E. O’Brien, and L. DiCarlo. Experimental error mitigation via symmetry verification in a variational quantum eigensolver. Phys. Rev. A, 100:010302, (2019). URL: https://link.aps.org/doi/10.1103/PhysRevA.100.010302, doi:10.1103/PhysRevA.100.010302.

23

Carlo Cafaro and Peter van Loock. Approximate quantum error correction for generalized amplitude-damping errors. Phys. Rev. A, 89:022316, (2014). URL: https://link.aps.org/doi/10.1103/PhysRevA.89.022316, doi:10.1103/PhysRevA.89.022316.

24

Robert M. Parrish, Edward G. Hohenstein, Peter L. McMahon, and Todd J. Mart’ınez. Quantum computation of electronic transitions using a variational quantum eigensolver. Phys. Rev. Lett., 122:230401, (2019). URL: https://link.aps.org/doi/10.1103/PhysRevLett.122.230401, doi:10.1103/PhysRevLett.122.230401.

25

Mario Motta, Chong Sun, Adrian T. K. Tan, Matthew J. O’Rourke, Erika Ye, Austin J. Minnich, Fernando G. S. L. Brandão, and Garnet Kin-Lic Chan. Publisher correction: determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution. Nature Physics, 16(2):231–231, (2020). URL: https://doi.org/10.1038/s41567-019-0756-5, doi:10.1038/s41567-019-0756-5.