Source code for mitiq.calibration.settings

# Copyright (C) Unitary Fund
#
# This source code is licensed under the GPL license (v3) found in the
# LICENSE file in the root directory of this source tree.

from dataclasses import asdict, dataclass
from enum import Enum, auto
from functools import partial
from typing import Any, Callable, Dict, List, cast

import cirq
import networkx as nx
import numpy as np

from mitiq import QPROGRAM, SUPPORTED_PROGRAM_TYPES, Executor
from mitiq.benchmarks import (
    generate_ghz_circuit,
    generate_mirror_circuit,
    generate_rb_circuits,
    generate_rotated_rb_circuits,
    generate_w_circuit,
)
from mitiq.interface import convert_from_mitiq
from mitiq.pec import execute_with_pec
from mitiq.pec.representations import (
    represent_operation_with_local_biased_noise,
    represent_operation_with_local_depolarizing_noise,
)
from mitiq.raw import execute
from mitiq.zne import execute_with_zne
from mitiq.zne.inference import LinearFactory, RichardsonFactory
from mitiq.zne.scaling import fold_gates_at_random, fold_global


[docs] class MitigationTechnique(Enum): """Simple enum type for handling validation, and providing helper functions when accessing mitigation techniques.""" ZNE = auto() PEC = auto() RAW = auto() @property def mitigation_function(self) -> Callable[..., float]: if self is MitigationTechnique.ZNE: return execute_with_zne elif self is MitigationTechnique.PEC: return cast(Callable[..., float], execute_with_pec) elif self is MitigationTechnique.RAW: return execute
calibration_supported_techniques = { "ZNE": MitigationTechnique.ZNE, "PEC": MitigationTechnique.PEC, }
[docs] @dataclass class BenchmarkProblem: """A dataclass containing information for instances of problems that will be run during the calibrations process. Args: id: A unique numerical id. circuit: The circuit to be run. type: The type of the circuit (often the name of the algorithm) ideal_distribution: The ideal probability distribution after applying ``circuit``. """ id: int circuit: cirq.Circuit type: str ideal_distribution: Dict[str, float] def most_likely_bitstring(self) -> str: distribution = self.ideal_distribution return max(distribution, key=distribution.__getitem__) def largest_probability(self) -> float: return max(self.ideal_distribution.values())
[docs] def converted_circuit( self, circuit_type: SUPPORTED_PROGRAM_TYPES ) -> QPROGRAM: """Adds measurements to all qubits and convert to the input frontend type. Args: circuit_type: The circuit type as a string. For supported circuit types see mitiq.SUPPORTED_PROGRAM_TYPES. Returns: The converted circuit with final measurements. """ circuit = self.circuit.copy() circuit.append(cirq.measure(circuit.all_qubits())) return convert_from_mitiq(circuit, circuit_type.value)
@property def num_qubits(self) -> int: return len(self.circuit.all_qubits()) @property def circuit_depth(self) -> int: return len(self.circuit) @property def two_qubit_gate_count(self) -> int: return sum(len(op.qubits) > 1 for op in self.circuit.all_operations())
[docs] def to_dict(self) -> Dict[str, Any]: """Produces a summary of the ``BenchmarkProblem``, to be used in recording the results when running calibration experiments. Returns: Dictionary summarizing important attributes of the problem's circuit. """ base = asdict(self) # remove circuit; it can be regenerated if needed del base["circuit"] del base["id"] base["num_qubits"] = self.num_qubits base["circuit_depth"] = self.circuit_depth base["two_qubit_gate_count"] = self.two_qubit_gate_count return base
def __repr__(self) -> str: return str(self.to_dict()) def __str__(self) -> str: result = "" for key, value in self.to_dict().items(): if key == "ideal_distribution": continue title: str = key.replace("_", " ").capitalize() result += f"{title}: {value}\n" return result.rstrip()
[docs] @dataclass class Strategy: """A dataclass which describes precisely an error mitigation approach by specifying a technique and the associated options. Args: id: A unique numerical id. technique: One of Mitiq's support error mitigation strategies, specified as a :class:`MitigationTechnique`. technique_params: A dictionary of options to pass to the mitigation method specified in `technique`. """ id: int technique: MitigationTechnique technique_params: Dict[str, Any] @property def mitigation_function(self) -> Callable[..., float]: if self.technique is MitigationTechnique.PEC: self.technique_params.setdefault("noise_bias", 0) def partial_pec(circuit: cirq.Circuit, execute: Executor) -> float: rep_function = self.technique_params["representation_function"] operations = [] for op in circuit.all_operations(): if len(op.qubits) >= 2 and op not in operations: operations.append(cirq.Circuit(op)) num_samples = self.technique_params["num_samples"] if ( self.technique_params["representation_function"] == represent_operation_with_local_biased_noise ): reps = [ rep_function( op, self.technique_params["noise_level"], self.technique_params["noise_bias"], ) for op in operations ] else: reps = [ rep_function( op, self.technique_params["noise_level"], ) for op in operations ] return self.technique.mitigation_function( circuit, execute, representations=reps, num_samples=num_samples, ) return partial_pec elif self.technique is MitigationTechnique.ZNE: return partial( self.technique.mitigation_function, **self.technique_params ) else: raise ValueError( """Specified technique is not supported by calibration. See {} for supported techniques.""", calibration_supported_techniques, )
[docs] def to_dict(self) -> Dict[str, Any]: """A summary of the strategies parameters, without the technique added. Returns: A dictionary describing the strategies parameters.""" summary = {"technique": self.technique.name} if self.technique is MitigationTechnique.ZNE: inference_func = self.technique_params["factory"] summary["factory"] = inference_func.__class__.__name__ summary["scale_factors"] = inference_func._scale_factors summary["scale_method"] = self.technique_params[ "scale_noise" ].__name__ elif self.technique is MitigationTechnique.PEC: summary["representation_function"] = self.technique_params[ "representation_function" ].__name__ summary["noise_level"] = self.technique_params["noise_level"] summary["noise_bias"] = self.technique_params.setdefault( "noise_bias", 0 ) summary["is_qubit_dependent"] = self.technique_params[ "is_qubit_dependent" ] summary["num_samples"] = self.technique_params["num_samples"] return summary
def to_pretty_dict(self) -> Dict[str, str]: summary = self.to_dict() if self.technique is MitigationTechnique.ZNE: summary["scale_factors"] = str(summary["scale_factors"])[1:-1] summary["factory"] = summary["factory"][:-7] elif self.technique is MitigationTechnique.PEC: summary["noise_bias"] = summary.get("noise_bias", "N/A") summary["representation_function"] = summary[ "representation_function" ][25:] return summary def __repr__(self) -> str: return str(self.to_dict()) def __str__(self) -> str: result = "" for key, value in self.to_pretty_dict().items(): title: str = key.replace("_", " ").capitalize() result += f"{title}: {value}\n" return result.rstrip() def num_circuits_required(self) -> int: summary = self.to_dict() if self.technique is MitigationTechnique.ZNE: return len(summary["scale_factors"]) elif self.technique is MitigationTechnique.PEC: return summary["num_samples"] elif self.technique is MitigationTechnique.RAW: return 1 return None
[docs] class Settings: """A class to store the configuration settings of a :class:`.Calibrator`. Args: benchmarks: A list where each element is a dictionary of parameters for generating circuits to be used in calibration experiments. The dictionary keys include ``circuit_type``, ``num_qubits``, ``circuit_depth``, and in the case of mirror circuits, a random seed ``circuit_seed``. An example of input to ``benchmarks`` is:: [ { "circuit_type": "rb", "num_qubits": 2, "circuit_depth": 7, }, { "circuit_type": "mirror", "num_qubits": 2, "circuit_depth": 7, "circuit_seed": 1, } ] strategies: A specification of the methods/parameters to be used in calibration experiments. """ def __init__( self, benchmarks: List[Dict[str, Any]], strategies: List[Dict[str, Any]], ): self.techniques = [ MitigationTechnique[technique["technique"].upper()] for technique in strategies ] self.technique_params = strategies self.benchmarks = benchmarks self.strategy_dict: Dict[int, Strategy] = {} self.problem_dict: Dict[int, BenchmarkProblem] = {} def get_strategy(self, strategy_id: int) -> Strategy: return self.strategy_dict[strategy_id] def get_problem(self, problem_id: int) -> BenchmarkProblem: return self.problem_dict[problem_id]
[docs] def make_problems(self) -> List[BenchmarkProblem]: """Generate the benchmark problems for the calibration experiment. Returns: A list of :class:`BenchmarkProblem` objects""" circuits = [] for i, benchmark in enumerate(self.benchmarks): circuit_type = benchmark["circuit_type"] num_qubits = benchmark["num_qubits"] # Set default to return correct type depth = benchmark.get("circuit_depth", -1) if circuit_type == "ghz": circuit = generate_ghz_circuit(num_qubits) ideal = {"0" * num_qubits: 0.5, "1" * num_qubits: 0.5} elif circuit_type == "w": circuit = generate_w_circuit(num_qubits) ideal = {} for i in range(num_qubits): bitstring = "0" * i + "1" + "0" * (num_qubits - i - 1) ideal[bitstring] = 1 / num_qubits elif circuit_type == "rb": circuit = generate_rb_circuits(num_qubits, depth)[0] ideal = {"0" * num_qubits: 1.0} elif circuit_type == "rotated_rb": theta = benchmark["theta"] if num_qubits == 1: circuit = generate_rotated_rb_circuits(num_qubits, depth)[ 0 ] p = (2 / 3) * np.sin(theta / 2) ** 2 ideal = {"0": p, "1": 1 - p} else: raise NotImplementedError( """rotated rb circuits with >1 qubits not yet supported in calibration""" ) elif circuit_type == "mirror": seed = benchmark.get("circuit_seed", None) circuit, bitstring_list = generate_mirror_circuit( nlayers=depth, two_qubit_gate_prob=1.0, connectivity_graph=nx.complete_graph(num_qubits), seed=seed, ) ideal_bitstring = "".join(map(str, bitstring_list)) ideal = {ideal_bitstring: 1.0} elif circuit_type == "qv": raise NotImplementedError( "quantum volume circuits not yet supported in calibration" ) else: raise ValueError( "invalid value passed for `circuit_types`. Must be " "one of `ghz`, `rb`, `mirror`, `w`, or `qv`, " f"but got {circuit_type}." ) circuit = cast(cirq.Circuit, circuit) problem = BenchmarkProblem( id=i, circuit=circuit, type=circuit_type, ideal_distribution=ideal, ) circuits.append(problem) self.problem_dict[problem.id] = problem return circuits
[docs] def make_strategies(self) -> List[Strategy]: """Generates a list of :class:`Strategy` objects using the specified configurations. Returns: A list of :class:`Strategy` objects.""" funcs = [] for i, (technique, params) in enumerate( zip(self.techniques, self.technique_params) ): params_copy = params.copy() del params_copy["technique"] strategy = Strategy( id=i, technique=technique, technique_params=params_copy ) funcs.append(strategy) self.strategy_dict[strategy.id] = strategy return funcs
ZNE_SETTINGS = Settings( benchmarks=[ { "circuit_type": "ghz", "num_qubits": 2, }, { "circuit_type": "w", "num_qubits": 2, }, { "circuit_type": "rb", "num_qubits": 2, "circuit_depth": 7, }, { "circuit_type": "mirror", "num_qubits": 2, "circuit_depth": 7, "circuit_seed": 1, }, ], strategies=[ { "technique": "zne", "scale_noise": fold_global, "factory": RichardsonFactory([1.0, 2.0, 3.0]), }, { "technique": "zne", "scale_noise": fold_global, "factory": RichardsonFactory([1.0, 3.0, 5.0]), }, { "technique": "zne", "scale_noise": fold_global, "factory": LinearFactory([1.0, 2.0, 3.0]), }, { "technique": "zne", "scale_noise": fold_global, "factory": LinearFactory([1.0, 3.0, 5.0]), }, { "technique": "zne", "scale_noise": fold_gates_at_random, "factory": RichardsonFactory([1.0, 2.0, 3.0]), }, { "technique": "zne", "scale_noise": fold_gates_at_random, "factory": RichardsonFactory([1.0, 3.0, 5.0]), }, { "technique": "zne", "scale_noise": fold_gates_at_random, "factory": LinearFactory([1.0, 2.0, 3.0]), }, { "technique": "zne", "scale_noise": fold_gates_at_random, "factory": LinearFactory([1.0, 3.0, 5.0]), }, ], ) PEC_SETTINGS = Settings( benchmarks=[ { "circuit_type": "ghz", "num_qubits": 2, }, { "circuit_type": "w", "num_qubits": 2, }, { "circuit_type": "rb", "num_qubits": 2, "circuit_depth": 7, }, { "circuit_type": "mirror", "num_qubits": 2, "circuit_depth": 7, "circuit_seed": 1, }, ], strategies=[ { "technique": "pec", "representation_function": ( represent_operation_with_local_depolarizing_noise ), "is_qubit_dependent": False, "noise_level": 0.001, "num_samples": 200, "force_run_all": False, }, { "technique": "pec", "representation_function": ( represent_operation_with_local_depolarizing_noise ), "is_qubit_dependent": False, "noise_level": 0.01, "num_samples": 200, "force_run_all": False, }, ], ) DefaultStrategy = Strategy(0, MitigationTechnique.RAW, {})