Source code for mitiq.cdr.data_regression
# Copyright (C) Unitary Fund
#
# This source code is licensed under the GPL license (v3) found in the
# LICENSE file in the root directory of this source tree.
"""The data regression portion of Clifford data regression."""
from typing import Sequence
import numpy as np
import numpy.typing as npt
[docs]
def linear_fit_function(
x_data: npt.NDArray[np.float64], params: Sequence[float]
) -> float:
r"""Returns :math:`y(x) = a_1 x_1 + \cdots + a_n x_n + b`.
Args:
x_data: The independent variables $x_1, ..., x_n$. In CDR, these are
nominally the noisy expectation values to perform regression on.
params: Parameters $a_1, ..., a_n, b$ of the linear fit. Note the $b$
parameter is the intercept of the fit.
"""
return sum(a * x for a, x in zip(params, x_data)) + params[-1]
[docs]
def linear_fit_function_no_intercept(
x_data: npt.NDArray[np.float64], params: Sequence[float]
) -> float:
r"""Returns :math:`y(x) = a_1 x_1 + \cdots + a_n x_n`.
Args:
x_data: The independent variables $x_1, ..., x_n$. In CDR, these are
nominally the noisy expectation values to perform regression on.
params: Parameters $a_1, ..., a_n$ of the linear fit.
"""
return sum(a * x for a, x in zip(params, x_data))